Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.035
Filtrar
1.
PLoS One ; 19(4): e0299640, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574051

RESUMO

The stringent response exerted by (p)ppGpp and RNA-polymerase binding protein DksA regulates gene expression in diverse bacterial species. To control gene expression (p)ppGpp, synthesized by enzymes RelA and SpoT, interacts with two sites within the RNA polymerase; site 1, located in the interphase between subunits ß' and ω (rpoZ), and site 2 located in the secondary channel that is dependent on DksA protein. In Escherichia coli, inactivation of dksA results in a reduced sigma factor RpoS expression. In Azotobacter vinelandii the synthesis of polyhydroxybutyrate (PHB) is under RpoS regulation. In this study, we found that the inactivation of relA or dksA, but not rpoZ, resulted in a negative effect on PHB synthesis. We also found that the dksA, but not the relA mutation reduced both rpoS transcription and RpoS protein levels, implying that (p)ppGpp and DksA control PHB synthesis through different mechanisms. Interestingly, despite expressing rpoS from a constitutive promoter in the dksA mutant, PHB synthesis was not restored to wild type levels. A transcriptomic analysis in the dksA mutant, revealed downregulation of genes encoding enzymes needed for the synthesis of acetyl-CoA, the precursor substrate for PHB synthesis. Together, these data indicate that DksA is required for optimal expression of RpoS which in turn activates transcription of genes for PHB synthesis. Additionally, DksA is required for optimal transcription of genes responsible for the synthesis of precursors for PHB synthesis.


Assuntos
Azotobacter vinelandii , Proteínas de Escherichia coli , Poli-Hidroxibutiratos , Proteínas de Escherichia coli/genética , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Guanosina Pentafosfato , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
2.
mSystems ; 9(3): e0015524, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376168

RESUMO

A grand challenge for the next century is in facing a changing climate through bioengineering solutions. Biological nitrogen fixation, the globally consequential, nitrogenase-catalyzed reduction of atmospheric nitrogen to bioavailable ammonia, is a vital area of focus. Nitrogen fixation engineering relies upon extensive understanding of underlying genetics in microbial models, including the broadly utilized gammaproteobacterium, Azotobacter vinelandii (A. vinelandii). Here, we report the first CRISPR interference (CRISPRi) system for targeted gene silencing in A. vinelandii that integrates genomically via site-specific transposon insertion. We demonstrate that CRISPRi can repress transcription of an essential nitrogen fixation gene by ~60%. Further, we show that nitrogenase genes are suitably expressed from the transposon insertion site, indicating that CRISPRi and engineered nitrogen fixation genes can be co-integrated for combinatorial studies of gene expression and engineering. Our established CRISPRi system fills an important gap for engineering microbial nitrogen fixation for desired purposes.IMPORTANCEAll life on Earth requires nitrogen to survive. About 78% of the atmosphere alone is nitrogen, yet humans cannot use it directly. Instead, we obtain the nitrogen we need for our survival through the food we eat. For more than 100 years, a substantial portion of agricultural productivity has relied on industrial methods for nitrogen fertilizer synthesis, which consumes significant amounts of nonrenewable energy resources and exacerbates environmental degradation and human-induced climate change. Promising alternatives to these industrial methods rely on engineering the only biological pathway for generating bioaccessible nitrogen: microbial nitrogen fixation. Bioengineering strategies require an extensive understanding of underlying genetics in nitrogen-fixing microbes, but genetic tools for this critical goal remain lacking. The CRISPRi gene silencing system that we report, developed in the broadly utilized nitrogen-fixing bacterial model, Azotobacter vinelandii, is an important step toward elucidating the complexity of nitrogen fixation genetics and enabling their manipulation.


Assuntos
Azotobacter vinelandii , Fixação de Nitrogênio , Humanos , Fixação de Nitrogênio/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Nitrogenase/genética , Nitrogênio/metabolismo , Sequência de Bases , Azotobacter vinelandii/genética
3.
J Hazard Mater ; 466: 133553, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266589

RESUMO

Vanadium dioxide (VO2) has been used in a variety of products due to its outstanding phase transition properties. However, as potential heavy metal contaminants, the environmental hazards and risks of VO2 should be systematically investigated. Biological nitrogen fixation is one of the most dominant processes in biogeochemical cycle, which is associated with nitrogen-fixing bacteria. In this study, we reported the environmental bio-effects of VO2 micro/nanoparticles on the nitrogen-fixing bacterium Azotobacter vinelandii. VO2 at 10 and 30 mg/L caused severe hazards to A. vinelandii, such as cell apoptosis, oxidative damage, physical damage, genotoxicity, and the loss of nitrogen fixation activity. The up-regulated differentially expressed genes of A. vinelandii were related to stress response, and the down-regulated genes were mainly related to energy metabolism. Surprisingly, VO2 of 10 mg/L decreased the nif gene expression but elevated the vnf gene expression, which enhanced the ability of A. vinelandii to reduce acetylene in anaerobic environment. In addition, under tested conditions, VO2 nanoparticles exhibited insignificantly higher toxicity than VO2 microparticles.


Assuntos
Azotobacter vinelandii , Bactérias Fixadoras de Nitrogênio , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Fixação de Nitrogênio/genética , Nitrogênio/metabolismo
4.
J Inorg Biochem ; 253: 112484, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38219407

RESUMO

The light-driven reduction of dinitrogen (N2) to ammonia (NH3) catalyzed by a cadmium sulfide (CdS) nanocrystal­nitrogenase MoFe protein biohybrid is dependent on a range of different factors, including an appropriate hole-scavenging sacrificial electron donor (SED). Here, the impact of different SEDs on the overall rate of N2 reduction catalyzed by a CdS quantum dot (QD)-MoFe protein system was determined. The selection of SED was guided by several goals: (i) molecules with standard reduction potentials sufficient to reduce the oxidized CdS QD, (ii) molecules that do not absorb the excitation wavelength of the CdS QD, and (iii) molecules that could be readily reduced by sustainable processes. Earlier studies utilized buffer molecules or ascorbic acid as the SED. The effectiveness of ascorbic acid as SED was compared to dithionite (DT), triethanolamine (TEOA), and hydroquinone (HQ) across a range of concentrations in supporting N2 reduction to NH3 in a CdS QD-MoFe protein photocatalytic system. It was found that TEOA supported N2 reduction rates comparable to those observed for dithionite and ascorbic acid. HQ was found to support significantly higher rates of N2 reduction compared to the other SEDs at a concentration of 50 mM. A comparison of the rates of N2 reduction by the biohybrid complex to the standard reduction potential (Eo) of the SEDs reveals that Eo is not the only factor impacting the efficiency of hole-scavenging. These findings reveal the importance of the SED properties for improving the efficiency of hole-scavenging in the light-driven N2 reduction reaction catalyzed by a CdS QD-MoFe protein hybrid.


Assuntos
Azotobacter vinelandii , Compostos de Cádmio , Nitrogenase , Sulfetos , Nitrogenase/metabolismo , Molibdoferredoxina/metabolismo , Oxirredução , Ditionita/metabolismo , Catálise , Ácido Ascórbico/metabolismo , Azotobacter vinelandii/metabolismo
5.
J Chem Phys ; 159(23)2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38117020

RESUMO

The biological reduction of N2 to ammonia requires the ATP-dependent, sequential delivery of electrons from the Fe protein to the MoFe protein of nitrogenase. It has been demonstrated that CdS nanocrystals can replace the Fe protein to deliver photoexcited electrons to the MoFe protein. Herein, light-activated electron delivery within the CdS:MoFe protein complex was achieved in the frozen state, revealing that all the electron paramagnetic resonance (EPR) active E-state intermediates in the catalytic cycle can be trapped and characterized by EPR spectroscopy. Prior to illumination, the CdS:MoFe protein complex EPR spectrum was composed of a S = 3/2 rhombic signal (g = 4.33, 3.63, and 2.01) consistent with the FeMo-cofactor in the resting state, E0. Illumination for sequential 1-h periods at 233 K under 1 atm of N2 led to a cumulative attenuation of E0 by 75%. This coincided with the appearance of S = 3/2 and S = 1/2 signals assigned to two-electron (E2) and four-electron (E4) reduced states of the FeMo-cofactor, together with additional S = 1/2 signals consistent with the formation of E6 and E8 states. Simulations of EPR spectra allowed quantification of the different E-state populations, along with mapping of these populations onto the Lowe-Thorneley kinetic scheme. The outcome of this work demonstrates that the photochemical delivery of electrons to the MoFe protein can be used to populate all of the EPR active E-state intermediates of the nitrogenase MoFe protein cycle.


Assuntos
Azotobacter vinelandii , Pontos Quânticos , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Temperatura , Oxirredução , Nitrogenase/química , Nitrogenase/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Azotobacter vinelandii/metabolismo
6.
PLoS One ; 18(11): e0286440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37967103

RESUMO

In the Pseduomonadacea family, the extracytoplasmic function sigma factor AlgU is crucial to withstand adverse conditions. Azotobacter vinelandii, a closed relative of Pseudomonas aeruginosa, has been a model for cellular differentiation in Gram-negative bacteria since it forms desiccation-resistant cysts. Previous work demonstrated the essential role of AlgU to withstand oxidative stress and on A. vinelandii differentiation, particularly for the positive control of alginate production. In this study, the AlgU regulon was dissected by a proteomic approach under vegetative growing conditions and upon encystment induction. Our results revealed several molecular targets that explained the requirement of this sigma factor during oxidative stress and extended its role in alginate production. Furthermore, we demonstrate that AlgU was necessary to produce alkyl resorcinols, a type of aromatic lipids that conform the cell membrane of the differentiated cell. AlgU was also found to positively regulate stress resistance proteins such as OsmC, LEA-1, or proteins involved in trehalose synthesis. A position-specific scoring-matrix (PSSM) was generated based on the consensus sequence recognized by AlgU in P. aeruginosa, which allowed the identification of direct AlgU targets in the A. vinelandii genome. This work further expands our knowledge about the function of the ECF sigma factor AlgU in A. vinelandii and contributes to explains its key regulatory role under adverse conditions.


Assuntos
Azotobacter vinelandii , Fator sigma , Fator sigma/genética , Fator sigma/metabolismo , Regulon/genética , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Proteômica , Proteínas de Choque Térmico/metabolismo , Alginatos/metabolismo , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas aeruginosa/genética
7.
Int J Biol Macromol ; 253(Pt 8): 127681, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37890746

RESUMO

Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) has attracted substantial attention as a promising material for industrial applications. In this study, different PHBV films with distinct 3-hydroxyvalerate (3HV) contents produced by Azotobacter vinelandii OP were evaluated. The 3HV fraction ranged from 18.6 to 36.7 mol%, and the number-average molecular weight (Mn) was between 238 and 434 kDa. In the bioreactor, a 3HV fraction (36.7 mol%) and an Mn value of 409 kDa were obtained with an oxygen transfer rate (OTR) of 12.5 mmol L-1 h-1. Thermal analysis measurements showed decreased melting (Tm) and glass transition (Tg) temperatures, and values with relatively high 3HV fractions indicated improved thermomechanical properties. The incorporation of the 3HV fraction in the PHBV chain improved the thermal stability of the films, reduced the polymer Tm, and affected the tensile strength. PHBV film with 36.7 mol% 3HV showed an increase in its tensile strength (51.8 MPa) and a decrease in its Tm (170.61 °C) compared with PHB. Finally, scanning electron microscopy (SEM) results revealed that the PHBV film with 32.8 mol% 3HV showed a degradation upon contact with soil, water, or soil bacteria, showing more porous surfaces after degradation. The latter phenomenon indicated that thermomechanical properties played an important role in biodegradation.


Assuntos
Azotobacter vinelandii , Azotobacter vinelandii/metabolismo , Hidroxibutiratos , Poliésteres/metabolismo , Poli A , Solo
8.
Proc Natl Acad Sci U S A ; 120(44): e2314788120, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37871225

RESUMO

Nitrogenase is an active target of heterologous expression because of its importance for areas related to agronomy, energy, and environment. One major hurdle for expressing an active Mo-nitrogenase in Escherichia coli is to generate the complex metalloclusters (P- and M-clusters) within this enzyme, which involves some highly unique bioinorganic chemistry/metalloenzyme biochemistry that is not generally dealt with in the heterologous expression of proteins via synthetic biology; in particular, the heterologous synthesis of the homometallic P-cluster ([Fe8S7]) and M-cluster core (or L-cluster; [Fe8S9C]) on their respective protein scaffolds, which represents two crucial checkpoints along the biosynthetic pathway of a complete nitrogenase, has yet to be demonstrated by biochemical and spectroscopic analyses of purified metalloproteins. Here, we report the heterologous formation of a P-cluster-containing NifDK protein upon coexpression of Azotobacter vinelandii nifD, nifK, nifH, nifM, and nifZ genes, and that of an L-cluster-containing NifB protein upon coexpression of Methanosarcina acetivorans nifB, nifS, and nifU genes alongside the A. vinelandii fdxN gene, in E. coli. Our metal content, activity, EPR, and XAS/EXAFS data provide conclusive evidence for the successful synthesis of P- and L-clusters in a nondiazotrophic host, thereby highlighting the effectiveness of our metallocentric, divide-and-conquer approach that individually tackles the key events of nitrogenase biosynthesis prior to piecing them together into a complete pathway for the heterologous expression of nitrogenase. As such, this work paves the way for the transgenic expression of an active nitrogenase while providing an effective tool for further tackling the biosynthetic mechanism of this important metalloenzyme.


Assuntos
Azotobacter vinelandii , Metaloproteínas , Nitrogenase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fixação de Nitrogênio/genética , Oxirredutases/metabolismo , Metaloproteínas/metabolismo , Proteínas de Bactérias/metabolismo
9.
Proc Natl Acad Sci U S A ; 120(30): e2302732120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459513

RESUMO

NifL is a conformationally dynamic flavoprotein responsible for regulating the activity of the σ54-dependent activator NifA to control the transcription of nitrogen fixation (nif) genes in response to intracellular oxygen, cellular energy, or nitrogen availability. The NifL-NifA two-component system is the master regulatory system for nitrogen fixation. NifL serves as a sensory protein, undergoing signal-dependent conformational changes that modulate its interaction with NifA, forming the NifL-NifA complex, which inhibits NifA activity in conditions unsuitable for nitrogen fixation. While NifL-NifA regulation is well understood, these conformationally flexible proteins have eluded previous attempts at structure determination. In work described here, we advance a structural model of the NifL dimer supported by a combination of scattering techniques and mass spectrometry (MS)-coupled structural analyses that report on the average structure in solution. Using a combination of small angle X-ray scattering-derived electron density maps and MS-coupled surface labeling, we investigate the conformational dynamics responsible for NifL oxygen and energy responses. Our results reveal conformational differences in the structure of NifL under reduced and oxidized conditions that provide the basis for a model for modulating NifLA complex formation in the regulation of nitrogen fixation in response to oxygen in the model diazotroph, Azotobacter vinelandii.


Assuntos
Azotobacter vinelandii , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/metabolismo , Fixação de Nitrogênio/fisiologia , Transdução de Sinais , Oxirredução , Oxigênio/metabolismo , Regulação Bacteriana da Expressão Gênica , Nitrogênio/metabolismo , Genes Bacterianos , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo
10.
Angew Chem Int Ed Engl ; 62(37): e202307101, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37438952

RESUMO

We report a rationally designed membrane-intercalating conjugated oligoelectrolyte (COE), namely COE-IC, which endows aerobic N2 -fixing bacteria Azotobacter vinelandii with a light-harvesting ability that enables photosynthetic ammonia production. COE-IC possesses an acceptor-donor-acceptor (A-D-A) type conjugated core, which promotes visible light absorption with a high molar extinction coefficient. Furthermore, COE-IC spontaneously associates with A. vinelandii to form a biohybrid in which the COE is intercalated within the lipid bilayer membrane. In the presence of L-ascorbate as a sacrificial electron donor, the resulting COE-IC/A. vinelandii biohybrid showed a 2.4-fold increase in light-driven ammonia production, as compared to the control. Photoinduced enhancement of bacterial biomass and production of L-amino acids is also observed. Introduction of isotopically enriched 15 N2 atmosphere led to the enrichment of 15 N-containing intracellular metabolites, consistent with the products being generated from atmospheric N2 .


Assuntos
Azotobacter vinelandii , Fixação de Nitrogênio , Amônia , Bactérias , Nitrogênio
11.
Mol Microbiol ; 120(1): 91-102, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37328957

RESUMO

In several Gram-negative bacteria, the general stress response is mediated by the alternative sigma factor RpoS, a subunit of RNA polymerase that confers promoter specificity. In Escherichia coli, regulation of protein levels of RpoS involves the adaptor protein RssB, which binds RpoS for presenting it to the ClpXP protease for its degradation. However, in species from the Pseudomonadaceae family, RpoS is also degraded by ClpXP, but an adaptor has not been experimentally demonstrated. Here, we investigated the role of an E. coli RssB-like protein in two representative Pseudomonadaceae species such as Azotobacter vinelandii and Pseudomonas aeruginosa. In these bacteria, inactivation of the rssB gene increased the levels and stability of RpoS during exponential growth. Downstream of rssB lies a gene that encodes a protein annotated as an anti-sigma factor antagonist (rssC). However, inactivation of rssC in both A. vinelandii and P. aeruginosa also increased the RpoS protein levels, suggesting that RssB and RssC work together to control RpoS degradation. Furthermore, we identified an in vivo interaction between RssB and RpoS only in the presence of RssC using a bacterial three-hybrid system. We propose that both RssB and RssC are necessary for the ClpXP-dependent RpoS degradation during exponential growth in two species of the Pseudomonadaceae family.


Assuntos
Azotobacter vinelandii , Proteínas de Escherichia coli , Fator sigma/genética , Fator sigma/metabolismo , Fatores de Transcrição/metabolismo , Escherichia coli/metabolismo , Proteínas de Ligação a DNA/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas de Escherichia coli/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica
12.
Plant Mol Biol ; 112(4-5): 279-291, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37326800

RESUMO

A long-held goal of synthetic biology has been the transfer of a bacterial nitrogen-fixation pathway into plants to reduce the use of chemical fertiliser on crops such as rice, wheat and maize. There are three classes of bacterial nitrogenase, named after their metal requirements, containing either a MoFe-, VFe- or FeFe-cofactor, that converts N2 gas to ammonia. Relative to the Mo-nitrogenase the Fe-nitrogenase is not as efficient for catalysis but has less complex genetic and metallocluster requirements, features that may be preferable for engineering into crops. Here we report the successful targeting of bacterial Fe-nitrogenase proteins, AnfD, AnfK, AnfG and AnfH, to plant mitochondria. When expressed as a single protein AnfD was mostly insoluble in plant mitochondria, but coexpression of AnfD with AnfK improved its solubility. Using affinity-based purification of mitochondrially expressed AnfK or AnfG we were able to demonstrate a strong interaction of AnfD with AnfK and a weaker interaction of AnfG with AnfDK. This work establishes that the structural components of the Fe-nitrogenase can be engineered into plant mitochondria and form a complex, which will be a requirement for function. This report outlines the first use of Fe-nitrogenase proteins within a plant as a preliminary step towards engineering an alternative nitrogenase into crops.


Assuntos
Azotobacter vinelandii , Nitrogenase , Nitrogenase/genética , Nitrogenase/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Ferro , Fixação de Nitrogênio , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
13.
Nat Rev Chem ; 7(6): 379, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37237160
14.
J Hazard Mater ; 452: 131373, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37031673

RESUMO

Metal-organic frameworks (MOFs) are rapidly developed materials with fantastic properties and wide applications. The increasing studies highlighted the potential threats of MOF materials to the environment. Comparing to the limited species of metal elements, the organic ligands have much higher diversity, but the influence of organic ligands on the environmental impacts of MOFs has not been revealed. Herein, we synthesized three Cu-MOFs with different organic ligands, namely Cu-BDC (1,4-terephthalic acid), Cu-IM (imidazole) and Cu-TATB (2,4,6-tris(4-carboxyphenyl)- 1,3,5-triazine), and evaluated their environmental toxicity to the nitrogen-fixing bacterium Azotobacter vinelandii. Cu-BDC inhibited the bacterial growth at lower concentrations than Cu-IM and Cu-TATB. The transcriptomes suggested the changes of membrane components by Cu-MOFs, consistent with the membrane leakage and cell wall damages. Cu-MOFs inhibited the nitrogen fixation activity through energy metabolism disturbance according to Gene Ontology functional annotation of ATP binding, Ca2+Mg2+-ATPase activity and ATP content. Only Cu-IM lowered the nitrogen fixation related nif genes, and affected the ribosome, purine metabolism and oxidative phosphorylation pathways. Otherwise, Cu-BDC and Cu-TATB mainly affected the flagellar assemblies and bacterial chemotaxis pathways. Our results collectively indicated that organic ligands regulated the environmental toxicity of MOFs through different metabolism pathways.


Assuntos
Azotobacter vinelandii , Estruturas Metalorgânicas , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Estruturas Metalorgânicas/química , Nitrogênio/metabolismo , Meio Ambiente , Trifosfato de Adenosina/metabolismo
15.
Int J Biol Macromol ; 242(Pt 1): 124626, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37119884

RESUMO

Fruit residues are attractive substrates for the production of bacterial polyhydroxyalkanoates due to the high contents of fermentable sugars and the fast, simple, and efficient pretreatment methods required. In this study, apple residues, mainly apple peel, were used as the sole carbon source in cultures of the bacterium Azotobacter vinelandii OP to produce poly-3-hydroxybutyrate (P3HB). Conversion from the residue to total sugars was highly effective, achieving conversions of up to 65.4 % w w-1 when using 1 % v v-1 sulfuric acid and 58.3 % w w-1 in the absence of acid (only water). The cultures were evaluated at the shake-flask scale and in 3-L bioreactors using a defined medium under nitrogen starvation conditions. The results showed the production of up to 3.94 g L-1 P3HB in a bioreactor, reaching an accumulation of 67.3 % w w-1 when using apple residues. For the PHB obtained from the cultures with apple residues, a melting point of 179.99 °C and a maximum degradation temperature of 274.64 °C were calculated. A P3HB production strategy is shown using easily hydrolysable fruit residues to achieve production yields comparable to those obtained with pure sugars under similar cultivation conditions.


Assuntos
Azotobacter vinelandii , Malus , Poli-Hidroxialcanoatos , Azotobacter vinelandii/metabolismo , Malus/metabolismo , Reatores Biológicos/microbiologia , Poliésteres/química , Hidroxibutiratos/química , Açúcares/metabolismo
16.
Acta Crystallogr D Struct Biol ; 79(Pt 5): 401-408, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37071394

RESUMO

26 well selected oxidized P-clusters (P2+) from the crystallographic data deposited in the Protein Data Bank have been analysed statistically by the bond-valence sum method with weighting schemes for MoFe proteins at different resolutions. Interestingly, the oxidation states of P2+ clusters correspond to Fe23+Fe62+ with high electron delocalization, showing the same oxidation states as the resting states of P-clusters (PN) in nitrogenases. The previously uncertain reduction of P2+ to PN clusters by two electrons was assigned as a double protonation of P2+, in which decoordination of the serine residue and the peptide chain of cysteine take place, in MoFe proteins. This is further supported by the obviously shorter α-alkoxy C-O bond (average of 1.398 Å) in P2+ clusters and longer α-hydroxy C-O bond (average of 1.422 Å) in PN clusters, while no change is observed in the electronic structures of Fe8S7 Fe atoms in P-clusters. Spatially, the calculations show that Fe3 and Fe6, the most oxidized and most reduced Fe atoms, have the shortest distances of 9.329 Šfrom the homocitrate in the FeMo cofactor and 14.947 Šfrom the [Fe4S4] cluster, respectively, and may well function as important electron-transport sites.


Assuntos
Azotobacter vinelandii , Molibdoferredoxina , Molibdoferredoxina/química , Nitrogenase/química , Elétrons , Azotobacter vinelandii/química , Azotobacter vinelandii/metabolismo , Transporte de Elétrons , Oxirredução , Espectroscopia de Ressonância de Spin Eletrônica
17.
Essays Biochem ; 67(3): 615-627, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36876890

RESUMO

Alginate is a polysaccharide consisting of ß-D-mannuronate (M) and α-L-guluronate (G) produced by brown algae and some bacterial species. Alginate has a wide range of industrial and pharmaceutical applications, owing mainly to its gelling and viscosifying properties. Alginates with high G content are considered more valuable since the G residues can form hydrogels with divalent cations. Alginates are modified by lyases, acetylases, and epimerases. Alginate lyases are produced by alginate-producing organisms and by organisms that use alginate as a carbon source. Acetylation protects alginate from lyases and epimerases. Following biosynthesis, alginate C-5 epimerases convert M to G residues at the polymer level. Alginate epimerases have been found in brown algae and alginate-producing bacteria, predominantly Azotobacter and Pseudomonas species. The best characterised epimerases are the extracellular family of AlgE1-7 from Azotobacter vinelandii(Av). AlgE1-7 all consist of combinations of one or two catalytic A-modules and one to seven regulatory R-modules, but even though they are sequentially and structurally similar, they create different epimerisation patterns. This makes the AlgE enzymes promising for tailoring of alginates to have the desired properties. The present review describes the current state of knowledge regarding alginate-active enzymes with focus on epimerases, characterisation of the epimerase reaction, and how alginate epimerases can be used in alginate production.


Assuntos
Azotobacter vinelandii , Liases , Racemases e Epimerases , Alginatos/química , Carboidratos Epimerases/química
18.
Elife ; 122023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36799917

RESUMO

The planetary biosphere is powered by a suite of key metabolic innovations that emerged early in the history of life. However, it is unknown whether life has always followed the same set of strategies for performing these critical tasks. Today, microbes access atmospheric sources of bioessential nitrogen through the activities of just one family of enzymes, nitrogenases. Here, we show that the only dinitrogen reduction mechanism known to date is an ancient feature conserved from nitrogenase ancestors. We designed a paleomolecular engineering approach wherein ancestral nitrogenase genes were phylogenetically reconstructed and inserted into the genome of the diazotrophic bacterial model, Azotobacter vinelandii, enabling an integrated assessment of both in vivo functionality and purified nitrogenase biochemistry. Nitrogenase ancestors are active and robust to variable incorporation of one or more ancestral protein subunits. Further, we find that all ancestors exhibit the reversible enzymatic mechanism for dinitrogen reduction, specifically evidenced by hydrogen inhibition, which is also exhibited by extant A. vinelandii nitrogenase isozymes. Our results suggest that life may have been constrained in its sampling of protein sequence space to catalyze one of the most energetically challenging biochemical reactions in nature. The experimental framework established here is essential for probing how nitrogenase functionality has been shaped within a dynamic, cellular context to sustain a globally consequential metabolism.


Assuntos
Azotobacter vinelandii , Nitrogenase , Nitrogenase/química , Nitrogenase/genética , Nitrogenase/metabolismo , Fixação de Nitrogênio , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Sequência de Aminoácidos , Nitrogênio/metabolismo
19.
Geobiology ; 21(4): 507-519, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36852450

RESUMO

Life on Earth depends on N2 -fixing microbes to make ammonia from atmospheric N2 gas by the nitrogenase enzyme. Most nitrogenases use Mo as a cofactor; however, V and Fe are also possible. N2 fixation was once believed to have evolved during the Archean-Proterozoic times using Fe as a cofactor. However, δ15 N values of paleo-ocean sediments suggest Mo and V cofactors despite their low concentrations in the paleo-oceans. This apparent paradox is based on an untested assumption that only soluble metals are bioavailable. In this study, laboratory experiments were performed to test the bioavailability of mineral-associated trace metals to a model N2 -fixing bacterium Azotobacter vinelandii. N2 fixation was observed when Mo in molybdenite, V in cavansite, and Fe in ferrihydrite were used as the sole sources of cofactors, but the rate of N2 fixation was greatly reduced. A physical separation between minerals and cells further reduced the rate of N2 fixation. Biochemical assays detected five siderophores, including aminochelin, azotochelin, azotobactin, protochelin, and vibrioferrin, as possible chelators to extract metals from minerals. The results of this study demonstrate that mineral-associated trace metals are bioavailable as cofactors of nitrogenases to support N2 fixation in those environments that lack soluble trace metals and may offer a partial answer to the paradox.


Assuntos
Azotobacter vinelandii , Oligoelementos , Fixação de Nitrogênio , Azotobacter vinelandii/metabolismo , Disponibilidade Biológica , Metais , Nitrogenase/metabolismo , Minerais , Molibdênio , Nitrogênio
20.
Nat Commun ; 14(1): 1091, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36841829

RESUMO

Nitrogenase catalyzes the ATP-dependent reduction of dinitrogen to ammonia during the process of biological nitrogen fixation that is essential for sustaining life. The active site FeMo-cofactor contains a [7Fe:1Mo:9S:1C] metallocluster coordinated with an R-homocitrate (HCA) molecule. Here, we establish through single particle cryoEM and chemical analysis of two forms of the Azotobacter vinelandii MoFe-protein - a high pH turnover inactivated species and a ∆NifV variant that cannot synthesize HCA - that loss of HCA is coupled to α-subunit domain and FeMo-cofactor disordering, and formation of a histidine coordination site. We further find a population of the ∆NifV variant complexed to an endogenous protein identified through structural and proteomic approaches as the uncharacterized protein NafT. Recognition by endogenous NafT demonstrates the physiological relevance of the HCA-compromised form, perhaps for cofactor insertion or repair. Our results point towards a dynamic active site in which HCA plays a role in enabling nitrogenase catalysis by facilitating activation of the FeMo-cofactor from a relatively stable form to a state capable of reducing dinitrogen under ambient conditions.


Assuntos
Azotobacter vinelandii , Nitrogenase , Nitrogenase/metabolismo , Proteômica , Molibdoferredoxina/química , Molibdoferredoxina/metabolismo , Ácidos Tricarboxílicos , Azotobacter vinelandii/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...